Fully corrective boosting with arbitrary loss and regularization

نویسندگان

  • Chunhua Shen
  • Hanxi Li
  • Anton van den Hengel
چکیده

We propose a general framework for analyzing and developing fully corrective boosting-based classifiers. The framework accepts any convex objective function, and allows any convex (for example, ℓp-norm, p ≥ 1) regularization term. By placing the wide variety of existing fully corrective boosting-based classifiers on a common footing, and considering the primal and dual problems together, the framework allows a direct comparison between apparently disparate methods. By solving the primal rather than the dual the framework is capable of generating efficient fully-corrective boosting algorithms without recourse to sophisticated convex optimization processes. We show that a range of additional boosting-based algorithms can be incorporated into the framework despite not being fully corrective. Finally, we provide an empirical analysis of the performance of a variety of the most significant boosting-based classifiers on a few machine learning benchmark datasets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Direct Approach to Multi-class Boosting and Extensions

Boosting methods combine a set of moderately accurate weak learners to form a highly accurate predictor. Despite the practical importance of multi-class boosting, it has received far less attention than its binary counterpart. In this work, we propose a fully-corrective multi-class boosting formulation which directly solves the multi-class problem without dividing it into multiple binary classi...

متن کامل

Totally Corrective Boosting with Cardinality Penalization

We propose a totally corrective boosting algorithm with explicit cardinality regularization. The resulting combinatorial optimization problems are not known to be efficiently solvable with existing classical methods, but emerging quantum optimization technology gives hope for achieving sparser models in practice. In order to demonstrate the utility of our algorithm, we use a distributed classic...

متن کامل

Totally Corrective Multiclass Boosting with Binary Weak Learners

In this work, we propose a new optimization framework for multiclass boosting learning. In the literature, AdaBoost.MO and AdaBoost.ECC are the two successful multiclass boosting algorithms, which can use binary weak learners. We explicitly derive these two algorithms’ Lagrange dual problems based on their regularized loss functions. We show that the Lagrange dual formulations enable us to desi...

متن کامل

Topics in Regularization and Boosting

Regularization is critical for successful statistical modeling of “modern” data, which is high-dimensional, sometimes noisy and often contains a lot of irrelevant predictors. It exists — implicitly or explicitly — at the heart of all successful methods. The two main challenges which we take on in this thesis are understanding its various aspects better and suggesting new regularization approach...

متن کامل

Boosting with Spatial Regularization

By adding a spatial regularization kernel to a standard loss function formulation of the boosting problem, we develop a framework for spatially informed boosting. From this regularized loss framework we derive an efficient boosting algorithm that uses additional weights/priors on the base classifiers. We prove that the proposed algorithm exhibits a “grouping effect”, which encourages the select...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural networks : the official journal of the International Neural Network Society

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2013